CYCLOTOMIC INVARIANTS FOR PRIMES BETWEEN 125000 AND 150000

R. ERNVALL AND T. METSÄNKYLÄ

Abstract

Computations by Iwasawa and Sims, by Johnson, and by Wagstaff have determined certain important cyclotomic invariants for all primes up to 125000 . We extended their results to 150000 , basing our work on a recently computed list of irregular primes and using a new method.

1. Introduction

Since 1978, when Wagstaff [10] published the results of his extensive computations, one knows the values of certain important cyclotomic invariants, notably the Iwasawa invariants λ_{p} and ν_{p}, for all primes $p<125000$. The first, and hardest, step in these computations is the determination of irregular primes. Recently Tanner and Wagstaff [9], returning to this theme, extended the list of irregular primes to 150000 and obtained partial results about the cyclotomic invariants.

The present note is a report on our computations completing the determination of these invariants up to $p<150000$. Since at the primes of this size the earlier methods of computation no longer are efficient, it was necessary to develop new techniques. A description of our method, based on a suitable combination of congruences for Bernoulli numbers, is included.

2. The results

Let p be an odd prime. For $n \geq 0$, let K_{n} denote the cyclotomic field of p^{n+1} th roots of 1 , and let h_{n} and A_{n} be the class number and p-class group, respectively, of K_{n}. As usual, write

$$
h_{n}=h_{n}^{+} h_{n}^{-}, \quad A_{n}=A_{n}^{+} \oplus A_{n}^{-},
$$

where h_{n}^{+}and A_{n}^{+}are the class number and p-class group, respectively, of the field $K_{n} \cap \mathbb{R}$.

It is well known that the triviality of A_{n}, for all $n \geq 0$, is equivalent to the triviality of A_{0}. If these groups are nontrivial, p is called irregular. This is the

[^0]case if and only if p divides $B_{2} B_{4} \cdots B_{p-3}$, where B_{t} are Bernoulli numbers (in the even suffix notation).

If p divides B_{t} with $t \in\{2,4, \ldots, p-3\}$, then (p, t) is called an irregular pair. We let r_{p} denote the number of such pairs, the index of irregularity of p.

Expressed in a brief form, the results of our computations read as follows: for every p between 125000 and 150000 ,

$$
\begin{equation*}
A_{n}^{-} \simeq\left(\mathbb{Z} / p^{n+1} \mathbb{Z}\right)^{r_{p}} \quad(n=0,1, \ldots) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{ord}_{p}\left(h_{0}^{-}\right)=\operatorname{ord}_{p}\left(B_{2} B_{4} \cdots B_{p-3}\right), \tag{2}
\end{equation*}
$$

where $\operatorname{ord}_{p}(a)$ stands for the exponent of p in the canonical decomposition of a.

Actually, we know that A_{n}^{+}is trivial for these p, so that (1) and (2) remain true if A_{n}^{-}and h_{0}^{-}are replaced by A_{n} and h_{0}, respectively. The triviality of A_{n}^{+}was proved by Tanner and Wagstaff [9] in conjunction with the verification of Fermat's Last Theorem for prime exponents $p<150000$; see, e.g., Corollary 8.19 in Washington's book [11].

The formulas (1) and (2), together with the result $A_{n}^{+}=1$, had been verified by Wagstaff [10] for $p<125000$, and earlier by Johnson [2], [3], [4] in shorter ranges. Computations for verifying (1) were initiated by Iwasawa and Sims [1].

By Iwasawa's general result,

$$
\operatorname{ord}_{p}\left(h_{n}\right)=\lambda_{p} n+\nu_{p}, \quad \operatorname{ord}_{p}\left(h_{n}^{-}\right)=\lambda_{p}^{-} n+\nu_{p}^{-}
$$

for all n large enough, say $n \geq n_{p}$, where $\lambda_{p}, \lambda_{p}^{-}, \nu_{p}, \nu_{p}^{-}$are integers $\left(\lambda_{p}\right.$, λ_{p}^{-}nonnegative) independent of n. Notice that the μ-invariant vanishes by the theorem of Ferrero and Washington. Given that the groups A_{n}^{+}are trivial, (1) is equivalent to

$$
\lambda_{p}=\lambda_{p}^{-}=\nu_{p}=\nu_{p}^{-}=r_{p}, \quad \operatorname{minimal} n_{p}=0
$$

(for this and the following facts, we refer to [11], especially $\S 10.3$).
We may decompose $\lambda_{p}^{-}=\lambda^{(2)}+\lambda^{(4)}+\cdots+\lambda^{(p-3)}$, where each $\lambda^{(t)}$ is the λ-invariant associated with the p-adic L-function $L_{p}\left(s, \omega^{t}\right), \omega$ being the Teichmüller character mod p. Since $\lambda^{(t)}$ is positive if and only if (p, t) is an irregular pair, the equation $\lambda_{p}^{-}=r_{p}$ is equivalent to

$$
\lambda^{(t)}=1 \text { for each irregular pair }(p, t)
$$

To establish the results (1) and (2), it is enough to verify-and this is what we did-that none of the following three congruences hold for any irregular pair (p, t):

$$
\begin{align*}
& \frac{B_{t}}{t} \equiv \frac{B_{t+p-1}}{t+p-1} \quad\left(\bmod p^{2}\right) \tag{i}\\
& B_{1}\left(\omega^{t-1}\right) \equiv 0 \quad\left(\bmod p^{2}\right)
\end{align*}
$$

$$
\begin{equation*}
B_{t} \equiv 0 \quad\left(\bmod p^{2}\right) \tag{iii}
\end{equation*}
$$

Here, $B_{1}\left(\omega^{t-1}\right)=(1 / p) \sum_{a=1}^{p-1} \omega^{t-1}(a) a$ is the first generalized Bernoulli number attached to ω^{t-1}, in fact, $B_{1}\left(\omega^{t-1}\right)=-L_{p}\left(0, \omega^{t}\right)$. We point out that (ii) can be converted into a simple congruence $\bmod p^{2}$ between B_{t} and B_{t+p-1}; see Propositions 6 and 2 in $\S 4$.

More precisely, the failures of (i) and (ii), for all t such that the pair (p, t) is irregular, imply that $\lambda_{p}^{-}=r_{p}$ and $\nu_{p}^{-}=r_{p}$, respectively [11, p. 201], and the failure of (iii) then yields the equation (2). Observe that the congruences in (i)-(iii) hold modulo p.

By Washington's heuristic arguments [6, p. 20] one expects that (1) and (2) remain true for all primes up to a very high limit. They should not be generally true, however.

3. The computations

If p is not too big, one can disprove (i)-(iii) by a fairly straightforward method involving basically the calculation of B_{t} and $B_{t+p-1} \bmod p^{2}$. In fact, such a method was employed by Johnson and Wagstaff for $p<125000$. There is also another method presented in [1]; it is more sophisticated but still relies quite heavily on computations $\bmod p^{2}$.

For p close to 150000 we have to find a method which keeps computations $\bmod p^{2}$ to a minimum. We point out that in order that c^{2} fit in a computer word, c should be below 2^{16}, which for c around $p / 2$ leads to the bound $p<1.3 \cdot 10^{5}$.

Write $p=2 m+1$. For an integer a prime to p, let q_{a} denote the Fermat quotient of a, i.e.,

$$
q_{a} \equiv \frac{a^{p-1}-1}{p} \quad(\bmod p), \quad 0 \leq q_{a}<p
$$

Putting

$$
\begin{gathered}
S_{1}=\sum_{a=1}^{m} a^{t-1} q_{a}, \quad S_{2}=\sum_{a=1}^{m} a^{t} q_{a}^{2}, \\
S_{3}=\sum_{a=1}^{m} a^{t-1}, \quad S_{4}=\sum_{0<a<p / 3} a^{t-1}, \quad S_{5}=\sum_{p / 3<a<p / 2} a^{t-2},
\end{gathered}
$$

we formulate the following criteria, where (p, t) is assumed to be an irregular pair. The proofs will be presented in $\S 4$.
Criterion 1. If $S_{1} \not \equiv 0(\bmod p)$, then (i) does not hold. If $S_{1} \equiv 0(\bmod p)$, then either $2^{t} \equiv 1(\bmod p)$ or (i) holds.

Criterion 2. If $S_{2} \not \equiv 0(\bmod p)$, then (i) does not hold. If $S_{2} \equiv 0(\bmod p)$, then either $2^{t-1} \equiv 1(\bmod p)$ or (i) holds.

Criterion 3. If $2^{t} \not \equiv 1(\bmod p)$, then (ii) is equivalent to

$$
S_{3} \equiv(1-t) p S_{1} \quad\left(\bmod p^{2}\right)
$$

and (iii) is equivalent to

$$
S_{3} \equiv 0 \quad\left(\bmod p^{2}\right) .
$$

Criterion 4. If $2^{t-1} \not \equiv 1$ and $3^{t} \not \equiv 1(\bmod p)$, then (ii) is equivalent to

$$
3 S_{4}-(1-t) p S_{5} \equiv-\left(\frac{2}{3}\right)^{t-2} \frac{3^{t}-1}{2^{t-1}-1}(1-t) p S_{2} \quad\left(\bmod p^{2}\right) .
$$

If $3^{t} \not \equiv 1(\bmod p)$, then (iii) is equivalent to

$$
3 S_{4}-(1-t) p S_{5} \equiv 0 \quad\left(\bmod p^{2}\right) .
$$

Criteria 1 and 2 always suffice to decide about the validity of (i), because the congruences $2^{t} \equiv 1$ and $2^{t-1} \equiv 1(\bmod p)$ never hold simultaneously. Similarly, Criteria 3 and 4 are sufficient for (ii) and (iii) except when $2^{t} \equiv 3^{t} \equiv 1$ $(\bmod p)$. For the case of the last instance one can derive analogous criteria that work under the assumption $b^{t} \not \equiv 1(\bmod p)$ for some other b prime to p (see §4).

There are 1079 irregular pairs with $125000<p<150000$. It turned out that all these pairs satisfy $2^{t-1} \not \equiv 1$ and $3^{t} \not \equiv 1(\bmod p)$, so that one can disprove (i)-(iii) merely by using Criteria 2 and 4 . The incongruence $2^{t} \not \equiv 1(\bmod p)$ holds everywhere except at the pair $(130811,52324)$. Thus, excluding this single pair, Criteria 1 and 3 apply to check the results.
In reality, we started with Criterion 1 without knowing of the above exception, and then went on with 2,4 , and 3 in this order.

We now describe the calculation of the sums S_{1}, \ldots, S_{5}.
To obtain S_{1} and $S_{2}\left(\bmod p\right.$, as they are needed), one has to find q_{a} which actually involves a computation $\bmod p^{2}$. We calculated the values of $q_{a}(1 \leq a \leq m)$ in cycles, passing from q_{a} to $q_{2 a}$ or, if $2 a>m$, to $q_{p-2 a}$. These are related to q_{a} by a simple congruence $\bmod p$. Hence, only the first q_{a} in each cycle actually requires computation $\bmod p^{2}$. In many cases (e.g., if 2 is a primitive root $\bmod p$ or if m is a prime) there is but one cycle, and in our range, less than every hundreth irregular prime had more than 10 cycles. A similar method was employed by Johnson [2, pp. 391, 396] in another connection.
Rather than to q_{a} only, we in fact applied this cycle method to the entire terms of S_{1} and S_{2}. The same cycles were then used in the calculation of the remaining sums. When calculating S_{3} and S_{4} this way, one has to perform some computation $\bmod p^{2}$ inside the cycles, too, but the method still appears to be quite efficient. The computation of S_{5} did not provide any serious problem, because this sum was needed mod p only.

The first program run by us computed, except for S_{1}, two additional sums $\bmod p$, namely S_{3} and

$$
S_{6}=\sum_{a=1}^{m} a^{t} q_{a}
$$

This was a check both for the correctness of our summing method and for the irregularity of the given pairs (p, t). Indeed, for an irregular pair, the latter sums vanish mod p (see Proposition 3 below). There were also some further checks to assure that the Fermat quotients were correctly calculated. The running time for a single irregular pair was generally 12 to 15 sec .

The programs computing S_{3} and $S_{4} \bmod p^{2}$ took somewhat more time to execute: one irregular pair was settled in 25 to 45 sec . One simple check was provided by the congruences $S_{3} \equiv S_{4} \equiv 0(\bmod p)$.

All programs were written in the language C and run on a VAX 6340 computer. After learning that the use of inline optimization (in the C-compiler version 3.0) may produce erroneous code, we ran all the programs once more without this option.

4. Proof of the criteria

The four criteria of the previous section will be proved by transforming the Bernoulli number congruences (i)-(iii) into congruences between the sums involved. The procedure is based on the following two congruences.
Proposition 1. Let t be a positive even integer prime to p and incongruent to 0 and $2(\bmod p-1)$. Then

$$
\begin{equation*}
\frac{B_{t}}{t} \equiv-\sum_{a=1}^{p-1} a^{t-1} v_{a}-\frac{t-1}{2} p \sum_{a=1}^{p-1} a^{t-2} v_{a}^{2} \quad\left(\bmod p^{2}\right) \tag{a}
\end{equation*}
$$

where v_{a} is the p-adic integer defined by $\omega(a)=a+v_{a} p$; furthermore,

$$
\begin{equation*}
\left(b^{t}-1\right) \frac{B_{t}}{t} \equiv \sum_{a=1}^{p-1}(b a)^{t-1}\left[\frac{b a}{p}\right]-\frac{t-1}{2} p \sum_{a=1}^{p-1}(b a)^{t-2}\left[\frac{b a}{p}\right]^{2} \quad\left(\bmod p^{2}\right) \tag{b}
\end{equation*}
$$

where b is any rational integer with $2 \leq b \leq p-1$ and $[x]$ denotes the largest integer $\leq x$.
Proof. The latter congruence, a sharpening of the Voronoi congruence, is due to Johnson [5, p. 261]; for a different proof see [8, p. 117].

The former congruence can be verified by an argument similar to one in [5, p. 253]: substitute $\omega(a)=a+v_{a} p$ in the equation $\sum_{a=1}^{p-1} \omega(a)^{t}=0$, expand the t th power, and reduce $\bmod p^{3}$, noting that $\sum_{a=1}^{p-1} a^{t} \equiv p B_{t}\left(\bmod p^{3}\right)$. This last congruence is proved, e.g., in [5, p. 261].

From now on we assume that

$$
t \in\{2,4, \ldots, p-3\}
$$

Thus, in particular, $p>3$.

Proposition 2. Excluding the case $t=2$, we have

$$
\frac{B_{t+p-1}}{t+p-1}-\frac{B_{t}}{t} \equiv-\frac{1}{2} p \sum_{a=1}^{p-1} a^{t} q_{a}^{2} \quad\left(\bmod p^{2}\right)
$$

Proof. This follows from Proposition 1(a). Observe that $a^{p-1}-1 \equiv p q_{a}$ $\left(\bmod p^{2}\right), v_{a} \equiv a q_{a}(\bmod p)$.

The next result is an easy consequence of known results. Here we prefer to deduce it from Proposition 1(a), since the same idea also applies to Proposition 4 below.
Proposition 3. The pair (p, t) is irregular if and only if $S_{3} \equiv S_{6} \equiv 0(\bmod p)$. Proof. If $t=2$, both statements are false. Assume that $t \neq 2$. By Proposition $1(\mathrm{a}),(p, t)$ is irregular if and only if $\sum_{a=1}^{p-1} a^{t} q_{a} \equiv 0(\bmod p)$. Using the congruences

$$
q_{p-a} \equiv q_{a}+a^{-1}, \quad q_{p-2 a} \equiv q_{2 a}+(2 a)^{-1}, \quad q_{2 a} \equiv q_{2}+q_{a} \quad(\bmod p)
$$

and noting that $\sum_{a=1}^{m} a^{t} \equiv 0(\bmod p)$, we reformulate the last sum in two ways:

$$
\begin{gathered}
\sum_{a=1}^{p-1} a^{t} q_{a} \equiv 2 \sum_{a=1}^{m} a^{t} q_{a}+\sum_{a=1}^{m} a^{t-1} \quad(\bmod p) \\
\sum_{a=1}^{p-1} a^{t} q_{a} \equiv 2^{t+1} \sum_{a=1}^{m} a^{t} q_{a}+2^{t-1} \sum_{a=1}^{m} a^{t-1} \quad(\bmod p)
\end{gathered}
$$

This gives us the claim.
As mentioned in $\S 3$, we used this proposition to check that the pairs (p, t) in the table by Tanner and Wagstaff are irregular.

Proposition 4. If (p, t) is an irregular pair, then

$$
\begin{align*}
& \left(1-2^{t}\right) \sum_{a=1}^{p-1} a^{t} q_{a}^{2} \equiv-2^{t} S_{1} \quad(\bmod p) \tag{a}\\
& \left(1-2^{t-1}\right) \sum_{a=1}^{p-1} a^{t} q_{a}^{2} \equiv 2^{t} S_{2} \quad(\bmod p) \tag{b}
\end{align*}
$$

Proof. Reformulate the sum $\sum_{a=1}^{p-1} a^{t} q_{a}^{2}$ by the same principles as before. In view of $S_{3} \equiv S_{6} \equiv 0$ and $\sum_{a=1}^{m} a^{t-2} \equiv 0(\bmod p)$ it follows that

$$
\begin{gathered}
\sum_{a=1}^{p-1} a^{t} q_{a}^{2} \equiv 2 S_{2}+2 S_{1} \quad(\bmod p) \\
\sum_{a=1}^{p-1} a^{t} q_{a}^{2} \equiv 2^{t+1} S_{2}+2^{t} S_{1} \quad(\bmod p)
\end{gathered}
$$

This pair of congruences yields the asserted congruences.

By combining Propositions 2 and 4 we obtain the following formulas for

$$
\Delta=\frac{B_{t+p-1}}{t+p-1}-\frac{B_{t}}{t}
$$

provided (p, t) is an irregular pair:

$$
\left(1-2^{t}\right) \frac{1}{p} \Delta \equiv 2^{t-1} S_{1}, \quad\left(1-2^{t-1}\right) \frac{1}{p} \Delta \equiv-2^{t-1} S_{2} \quad(\bmod p)
$$

This proves Criteria 1 and 2.
Remark. The former of these congruences also follows from a result of E . Lehmer [7, p. 355]. She traces the congruence back to Mirimanoff.

Proposition 5. Excluding the case $t=2$, we have

$$
\begin{equation*}
\left(2^{t}-1\right) \frac{B_{t}}{t} \equiv-2^{t-1} S_{3} \quad\left(\bmod p^{2}\right) \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\left(3^{t}-1\right) \frac{B_{t}}{t} \equiv-2 \cdot 3^{t-1} S_{4}+2 \cdot 3^{t-2}(1-t) p S_{5} \quad\left(\bmod p^{2}\right) \tag{b}
\end{equation*}
$$

Proof. We look at Proposition 1(b) with $b=2$ and 3, respectively. For $b=2$ note that $\sum_{a=1}^{m} a^{t-2} \equiv \sum_{a=m+1}^{p-1} a^{t-2} \equiv 0(\bmod p)$ and so, in particular,

$$
\sum_{a=m+1}^{p-1} a^{t-1}=\sum_{a=1}^{m}(p-a)^{t-1} \equiv-S_{3} \quad\left(\bmod p^{2}\right)
$$

For $b=3$ somewhat more lengthy calculations yield

$$
\begin{gathered}
\sum_{a=1}^{p-1} a^{t-1}\left[\frac{3 a}{p}\right]=-2 \sum_{0<a<p / 3} a^{t-1}-(t-1) p \sum_{p / 3<a<p / 2} a^{t-2}\left(\bmod p^{2}\right) \\
\sum_{a=1}^{p-1} a^{t-2}\left[\frac{3 a}{p}\right]^{2} \equiv-2 \sum_{p / 3<a<p / 2} a^{t-2}(\bmod p)
\end{gathered}
$$

Substitute the right-hand sides in the congruence of Proposition 1(b) and simplify.

Proposition 5 provides us the latter parts of Criteria 3 and 4.
Proposition 6. Excluding the case $t=2$, we have

$$
B_{1}\left(\omega^{t-1}\right) \equiv \frac{B_{t}}{t}-\frac{t-1}{2} p \sum_{a=1}^{p-1} a^{t} q_{a}^{2} \quad\left(\bmod p^{2}\right)
$$

Proof. We may write

$$
B_{1}\left(\omega^{t-1}\right)=\frac{1}{p} \sum_{a=1}^{p-1}\left(a+v_{a} p\right)^{t-1} a
$$

Since $\frac{1}{p} \sum_{a=1}^{p-1} a^{t} \equiv B_{t}\left(\bmod p^{2}\right)$, this implies

$$
B_{1}\left(\omega^{t-1}\right) \equiv B_{t}+(t-1) \sum_{a=1}^{p-1} a^{t-1} v_{a}+\frac{(t-1)(t-2)}{2} p \sum_{a=1}^{p-1} a^{t-2} v_{a}^{2} \quad\left(\bmod p^{2}\right)
$$

Multiply the congruence in Proposition 1(a) by $t-1$ and add to this congruence.

Proposition 7. Let (p, t) be an irregular pair. Then

$$
\frac{2^{t}-1}{2^{t-1}} B_{1}\left(\omega^{t-1}\right) \equiv-S_{3}+(1-t) p S_{1} \quad\left(\bmod p^{2}\right)
$$

and, provided that $2^{t-1} \not \equiv 1(\bmod p)$,

$$
\begin{aligned}
\frac{3^{t}-1}{2 \cdot 3^{t-2}} B_{1}\left(\omega^{t-1}\right) \equiv & -3 S_{4}+(1-t) p S_{5} \\
& -\left(\frac{2}{3}\right)^{t-2} \frac{3^{t}-1}{2^{t-1}-1}(1-t) p S_{2}\left(\bmod p^{2}\right)
\end{aligned}
$$

Proof. These two results are verified by multiplying the congruence of Proposition 6 by $2^{t}-1$ or $3^{t}-1$, respectively, and then using Propositions 5(a) and $4(a)$, or $5(b)$ and $4(b)$, respectively.

This completes the proof of Criteria 3 and 4.

Acknowledgment

Professor S. S. Wagstaff, Jr. kindly made available to us the unpublished table of irregular primes computed by himself and J. W. Tanner.

Bibliography

1. K. Iwasawa and C. Sims, Computation of invariants in the theory of cyclotomic fields, J. Math. Soc. Japan 18 (1966), 86-96.
2. W. Johnson, On the vanishing of the Iwasawa invariant μ_{p} for $p<8000$, Math. Comp. 27 (1973), 387-396.
3. __, Irregular prime divisors of the Bernoulli numbers, Math. Comp. 28 (1974), 653-657.
4. ___, Irregular primes and cyclotomic invariants, Math. Comp. 29 (1975), 113-120.
5. , p-adic proofs of congruences for the Bernoulli numbers, J. Number Theory 7 (1975), 251-265.
6. S. Lang, Cyclotomic Fields II, Springer-Verlag, Berlin and New York, 1980.
\rightarrow E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. (2) 39 (1938), 350-360.
7. T. Metsänkylä, The Voronoi congruence for Bernoulli numbers, The Very Knowledge of Coding, Univ. of Turku, Turku, 1987, pp. 112-119.
8. J. W. Tanner and S. S. Wagstaff, Jr., New congruences for the Bernoulli numbers, Math. Comp. 48 (1987), 341-350.
9. S. S. Wagstaff, Jr., The irregular primes to 125000, Math. Comp. 32 (1978), 583-591.
10. L. C. Washington, Introduction to cyclotomic fields, Springer-Verlag, Berlin and New York, 1982.

Department of Mathematics, University of Turku, SF-20500 Turku, Finland
E-mail address: rernvall@firien.bitnet and rernvall@kontu.utu.fi

[^0]: Received March 23, 1990.
 1980 Mathematics Subject Classification (1985 Revision). Primary 11R18, 11B68, 11R23, 11R29, 11 Y 40.

 Key words and phrases. Cyclotomic fields, Bernoulli numbers, irregular primes, Iwasawa invariants, class numbers, computation.

